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Abstract

This paper presents an experimental investigation on high-frequency brake squeal noise conducted on an appropriately

designed experimental rig, called laboratory brake.

Brake squeal is one of the major issues in the design process of an automotive brake and the development of a robust

procedure for a ‘‘squeal-free’’ design is still under investigation. The high-frequency squeal is the most frequent noise

generated by automotive brakes and is characterized by a wavelength of the ‘‘squealing mode’’ comparable to the length of

the brake pad.

The proposed ‘‘laboratory brake’’ is a good compromise between simple test rigs, such as the beam-on-disc, and the

experimental setups that use real brakes. The beam-on-disc setup is a useful tool to understand the mechanism leading to

the instability, but it does not simulate appropriately a real brake. On the other hand, real brakes are too complex for

fundamental investigation and for efficient modeling.

The experimental analysis shows a strong correlation between the length of the pad, the dynamic behavior of the system,

and the squealing deformed shape. Moreover, depending on the length of the pad compared with the wavelength of the

disc mode, three different kind of squeal instability may occur during experiments: the sine mode squeal, the cosine mode

squeal and the rotating squeal. The latter is characterized by nodal diameters rotating during a squeal cycle.

A linear reduced model, able to reproduce the dynamic behavior of the experimental setup, is used to predict the squeal

occurrence. However, such linear model is not able to predict the rotating squeal characteristic that seems to be caused by

nonlinear interactions due to the contact between the disc and the caliper.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Brake squeal refers to high-frequency sound emissions that are generated during the braking phase and
characterized by a periodic or harmonic spectrum. This phenomenon is common to both drum and disc
configurations and concerns both train and automotive brakes. Therefore, the geometry and the dimension of
brakes can vary widely, thus leading to very different sets of squeal frequencies and associated modes.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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During the past years several researchers developed their study on brake squeal using simplified
experimental rigs, among the others: Akay et al. [1], Algaier et al. [2], Tuchinda et al. [3], developed their
researches on the beam on disc setup, and found good agreement between the squeal occurrence and the
results of their models. However, it is not simple to extend such models to the study of real brakes. Therefore,
an intermediate setup was designed [4–6], the laboratory brake. This setup is simple enough to permit an easy
modeling, but approaches, more realistically than the beam on disc, a real automotive brake apparatus. Thus,
the laboratory brake can be considered as the ‘‘trait d’union’’ between the beam-on-disc setup and a
commercial brake. Moreover, this setup, used to study the low-frequency squeal, allowed for the development
of a consistent model [7] that is able to predict the squeal events occurring during experiments [4].

In Refs. [8,9] a setup that represents a different improvement of the beam-on-disc is presented. This setup,
called ‘‘TriboBrake’’, is particularly suited to study the correlation between squeal occurrence and the pad, the
caliper and the disc dynamics, and to investigate tribological aspects of the squeal instability.

Following the idea that for high-frequency squeal there is still lack of knowledge about the physic of squeal
and that a comprehensive understanding of the relation between the dynamics of the brake system and the
squeal characteristic is still missing, an experimental investigation on high-frequency squeal is conducted using
a modified laboratory brake. In particular this paper addresses some specific topic:
�

1

stu

vib
the qualitative differences between low- and high-frequency squeal events;

�
 the influence of the pad dimension on the squeal characteristics;

�
 the modeling and the prediction of the squeal occurrences retrieving also the specific characteristics of the

squeal event.

Therefore, the Laboratory Brake is modified to account for the ratio between the wavelength of the squeal
deformed shape and the dimension of the zone of contact.

The paper is divided into three parts: first the experimental setup is presented along with its dynamic
characterization. Then, the high-frequency squeal arising during experiments is presented and it is correlated
to the dynamic behavior of the system; the third section presents the reduced model of the rig that is adopted
to predict the squeal behavior of the setup.

The agreement between experimental and numerical results allows interpreting the squeal characteristics in
function of the pad dimension. The phenomenon of ‘‘traveling squeal’’ is also found and analyzed both
experimentally and numerically.

Since a simplified experimental rig is used, not all the results obtained can be exported as they present in this
study to the squeal arising in a commercial brake apparatus; nevertheless, some important aspects can provide
reliable data useful to guide the investigation conducted on real brakes that is the final aim of this work.

2. The experimental setup

Fig. 1 shows a schematic of the setup that consists of a steel disc that has a diameter of 358mm and is 25mm
thick. The disc is held by two bearings that are attached to an aluminum frame fixed to a table. An electric
motor rotates the disc. Fig. 2a shows a picture of the setup.

The HF squeal involves a deformed shape of the disc that has a wavelength comparable with the brake pad
length. To simplify the study of this problem instead of a standard brake pad, two small pads (5� 10mm ¼ 50mm2)
are used, assuming the distance d between them as the characteristic length of the pad (Fig. 2b).

In the laboratory brake, the caliper consists of a steel beam1 that holds the two brake pads that are obtained
by machining a commercial brake pad.

A thin aluminum plate holds the beam in the friction force direction (the direction of the relative velocity)
while applying a negligible force in the normal direction (the direction of the normal load). A support connects
the aluminum plate to the table.
Same results were obtained when two beams were holding the disc on both faces, as in Ref. [4]. The authors preferred to use for this

dy only one beam in order to have a side of the disc easily attainable for the use of a vibrometer laser scanner to allow a measure of the

rations of the rotor in the contact sector.
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Fig. 2. The laboratory brake setup (a) picture of the setup; (b) contact points arrangement.

Fig. 1. Schematic of the laboratory brake setup.
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The two brake pads are located along the axes of the beam and the distance d can be changed from test to
test. The distance between the rotor center and the beam axis is l0 ¼ 162mm.

The laser scanner vibrometer is used to measure the operational deflection shapes of the disc and the beam
during hammer tests as well as the squeal deformed shape during squeal events.

The use of two small pads, instead of a commercial brake pad is the key simplification introduced in this
setup. In fact, it is possible in this way to maintain a low coupling between the disc and the beam, so that the
dynamic behavior of the system can be easily interpreted in terms of the dynamic behavior of its components,
while studying the effect of the length of the contact on the squeal behavior.

Unfortunately this solution does not permit to consider the effect of the torsional modes and of high-order
bending modes of the pad.

2.1. Analysis of the dynamic behavior of the setup

To provide the reference behavior for the experimental setup, an experimental modal analysis is performed
on the laboratory brake components that are the beam and the disc when they are not in contact to one
another. In the following this condition is referred as ‘‘uncoupled condition’’.

Disc modes are characterized by nodal circumferences and nodal diameters: the disc modes (n,m) is
characterized by n nodal circumferences and m nodal diameters. Since the disc is axial symmetric the modes of
the disc are generally double modes.
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The test results for the uncoupled case provide a reference behavior for the laboratory brake as well as the
data necessary to build the reduced model of the setup (see Section 3.1). Table 1 lists, the natural frequency of
the laboratory brake components.

A further dynamic analysis is conduced on the assembled brake system.
As a result of the contact with the pads, the disc loses its axial symmetry and the modes of the disc with

double eigenfrequencies split;
The following notation is used to label the split system modes:
�

Ta

Na

Mo

(0,3

2nd

(1,1

(0,4

3rd

(0,5

(1,2

(0,6

4th

(1,3

(0,7

(1,4

(0,8

(1,5

(0,9
mode (n,m�): a nodal diameter is coincident with the center of the contact area (i.e. the middle point
between the two pads). These modes are also called sine modes.
�
 mode (n,m+): an antinode is coincident with the center of the contact area. These modes are also called
cosine modes.

Several hammer tests were performed to retrieve the dynamic behavior of the system as the distance between
the pads increases.

The natural frequencies of the coupled system mainly depend on the normal load, and the distance
between the pads. For a given normal load, it is possible to observe (Fig. 3) that, as the distance
between the pads changes, the natural frequency of the modes of the rotor oscillates. Moreover, the frequency
separation between two modes derived from the split of a double mode of the free rotor, first decrease
(e.g. for the (0,5) mode of the rotor for 0mmodo51mm), to increase, again, up to maximum
value (d ¼ 106mm for the (0,5) mode), to decrease again for higher value of d. Table 1 presents the average
value of the natural frequencies of the coupled rotor measured during the tests for several distances between
the pads.

Because the likelihood of a mode to squeal is dependent on the comparison between its wavelength and the
dimension of the contact zone, to generalize this analysis and to correlate the observations taken from
different modes, the results are presented in terms of split between the frequencies as a function of the ratio
r ¼ da/l where da ¼ 2 tg�1ðd=2l0Þ, d is the distance between the two brake pads and l is the wavelength of the
considered mode measured along the chord.

Table 2 shows the value of the distance between the pads and the corresponding value of the ratio r for the
considered modes of the rotor.

Fig. 4 shows the operative deformed shapes of the modes (0,5�) and (0,5+) measured with the laser scanner
during these tests for r ¼ 0, r ¼ 0.25, and r ¼ 0.5 respectively.
ble 1

tural frequency of the laboratory brake

de Natural frequency (Hz); uncoupled

disc and beam

Average frequency (Hz); coupled

system

Squeal frequency

) 1820 1912 1910–1920

beam 2340 2407

) 2630 2745

) 3110 3176 3140–3180

beam 4180 4237

) 4660 4695 4670–4700

) 5100 5177

) 6430 6446 6440–6460

beam 6840 7004

) 7180 7329

) 8380 8395 8390–8400

) N.A. 9569

) N.A. 10506 10,500

) N.A. 12130

) N.A. 12840 12,850
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Fig. 3. Natural frequencies of the mode (0,5) pair as the distance between the two pads changes.

Table 2

Distance between the pads and corresponding value of the ratio r

d (mm) r for (0,4) r for (0,5) r for (0,6) r for (0,7) r for (0,8) r for (0,9)

0 0 0 0 0 0 0

36 0.14 0.18 0.21 0.25 0.28 0.32

42 0.16 0.21 0.25 0.29 0.33 0.37

51 0.20 0.25 0.30 0.35 0.40 0.45

74 0.29 0.36 0.43 0.50 0.57 0.64

106 0.40 0.50 0.60 0.70 0.81 0.91

134 0.50 0.62 0.75 0.87 1.00 1.12
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Fig. 4 shows that for r ¼ 0 the two contact points fall on the nodal diameter of the (0,5�) mode and on an
antinodal diameter of the (0,5+), causing the split to be maximum. In fact, in this case the latter mode is
highly influenced by the contact with the pads, while the former is not, and it remains at the same frequency of
the (0,5) mode, measured in uncoupled conditions. Vice-versa, the opposite occurs for r ¼ 0.5.

If r ¼ 0.25, the amplitude of the disc displacement at the contact points is the same for both the modes; the
two modes are equally influenced by the contact and their frequency returns to be equal. In these conditions
the modes of the disc become double modes again.2

By representing these results as a function of r, it is possible to compare the dependency of the split of all
the modes of the rotor on the length of the pad. In fact, the behavior described above is the same for all the
modes of the disc. Fig. 5 shows the split of all disc modes in the studied frequency range as a function of the
ratio r. The split is assumed to be positive if the mode (n,m+) is at a lower frequency with respect to the
corresponding (n,m�) mode.
2In this paper two modes are considered a double mode when the separation in frequency is lower than the available frequency

resolution available in the experimentation that is usually 0.5Hz.
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Fig. 4. Operative deformed shape of the (0,5+) and (0,5�) modes of the disc for r ¼ 0, r ¼ 0.5, and r ¼ 0.5.

Fig. 5. Split of the disc modes for different values of the ration r.
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The plot is divided into four different regions named from A to D: in zone A and C, i.e. for 0oro0.25 and
for 0.75oro1.25 the (n,m+) modes are at a higher frequency with respect to the corresponding (n,m�) mode,
so that the split is negative. For r ¼ 0.25, r ¼ 0.75 and r ¼ 1.25 the measured split is almost zero.

Particular attention is devoted to the characterization of the pad dynamics; Fig. 6 presents the power
spectral density measurements for the in-plane and out-of-plane vibrations of one of the pads. The in-plane
vibrations are measured with an accelerometer put on the pad with its axis in the same direction of the relative
velocity; the out-o-plane vibrations are measured on the beam in a point coincident with the pad location.
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Fig. 6. Power spectral density of the pad acceleration: in-plane (black) and out-of-plane (gray).
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These measurements are made after 100 cycles following insertion of new pads, the disc rotation speed was
kept at 10 rev/min for normal loads of 300 N.

The out-of-plane response (gray line) in Fig. 6 contains all the system frequencies. The in-plane response of
the pad (dark line) also exhibits some of the same frequencies but less prominently than the out-of-plane
response. In addition, however, the in-plane response contains a highly damped spectral peak at 9 kHz that is
a shear natural frequency of the pad.

2.2. Experimental analysis of the squeal behavior of the setup

The measurements performed to characterize the squeal behavior of the setup are aimed at understanding,
for a given configuration of the system, which modes may become unstable. In order to establish a reliable
relation between possible instabilities and length of the pad, several tests are performed. The tests procedure
can be summarized as follows:
1.
 the distance between the two pads is set and the setup is assembled;

2.
 the disc starts rotating and the normal load is adjusted until squeal develops;

3.
 a vibrometer laser scan of the disc and the beam surface is performed in order to measure the squealing

deformed shape. An accelerometer located on the beam in the meddle point between the pads provides the
reference signal;
4.
 after the acquisition, the normal load is changed to look for a different squeal frequency.

These steps are performed for different distances between the pads (Table 1).
The squeal sound observed usually has a periodic spectrum with the magnitude of the fundamental

frequency higher than its sub-harmonics from 20 to 80 dB, depending on the test conditions. The fundamental
frequency is always close to a natural frequency of the coupled system. As a result, the vibration response of
the system is nearly identical to the corresponding operative deformed shape, which can be measured with the
laser scanner during a hammer test.

The squeal events are characterized by a fast exponential growth of the vibration of the system, during this
phase the signal is almost an exponentially increasing sinusoid. Then the amplitude stabilizes into a limit cycle,
super harmonics appear and the nonlinear aspects of the contact (mainly local detachment between disc and
pads) determine the amplitude of the cycle [9].

Depending on the distance between the contact points (length of the pad) with respect to the wavelength of
the disc mode three different kind of squeal instability were identified during experiment:
�
 the sine mode, characterized by fixed nodal diameters and a (n,m�) mode squealing;

�
 the cosine mode, characterized by fixed nodal diameters and a (n,m+) mode squealing;

�
 the rotating squeal, characterized by nodal diameters rotating during the squeal vibration.
Table 3 lists the squeal occurring during these tests. The table presents the squealing disc modes, the distance
between the two pads and, the ratio r for each mode involved in the squeal. For each distance between the pads and
each mode of the system involved in squeal, the corresponding value of the ratio r is displayed in the appropriate cell.
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Table 3

Squeal occurrences during experiments for different distance between the pads
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For example, for a distance d ¼ 106mm, five squeal conditions are found: 2 involving sine modes, the (0,5�)
and the mode (0,6�); a rotating squeal involving the (0,8) mode; two cosine modes (0,7+) and the (0,9+).

Table 3 is divided into four regions, reflecting the division made in Fig. 5. Squeals in zones A and C are
characterized by the (n,m+) modes squealing, while in regions B and D the (n,m�) modes become unstable.
We can summarize this by stating that, between the two split modes, derived from a double mode of the disc in
uncoupled conditions, it is generally the mode at higher frequency that is involved in the squeal instability.

This can be explained by considering that the larger is the modal displacement of the rotor at the contact
points, the larger is the coupling introduced by the contact. Large coupling has two effects [8]: first, it increases
the coupled natural frequency with respect to the uncoupled one (the peak is the one at higher frequency);
second, it increases the energy transfer from the tangential continuous rotation of the disc to the out-of-plane
vibrations of the system (higher propensity to squeal).

During the experiments only two squeal cases, represented by bold characters in the table, do not satisfy this
statement:
�
 the squeal of the mode (0,5) for d ¼ 51 and r ¼ 0.24;

�
 the squeal of the mode (0,7+) for d ¼ 106 and r ¼ 0.69.
Two different explanations may justify this discrepancy:
(1)
 these two cases have a value of r that is close to the boundary between the regions so that, in these
conditions, the coupling may occur for both (n,m+) and (n,m�) modes.
(2)
 there is an inevitable error in measuring the distance d between the two pads considered as a contact point
instead of taking into account the real contact surface.
Particulary interesting is the rotating squeal that may develop at the boundary between the zones
highlighted in Table 3. In fact, when the two split modes have again the same frequency, i.e. for r ¼ 0.25,
r ¼ 0.75, and r ¼ 1.25, both modes squeal together causing the squeal deformed shape not to be stationary
anymore, but rather, the nodal lines rotate during a squeal period as found in commercial brakes by
Fieldhouse et al. [10–12]. In this case the two stationary waves related to the (n,m+) and (n,m�), that have
‘‘per definition’’ 901 phase difference in space, may combine to produce the traveling wave observed
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Fig. 7. (0,6) Mode rotating squeal at 6400Hz, from a to f six frames of the rotating squealing shape.
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experimentally. It is worthwhile to note that in order to have a pure traveling wave, the two stationary waves
must have same amplitude and a 901 phase difference in time.

During the experiments, the rotating squeal events involve:
�
 the mode (0,6) for r ¼ 0.25

�
 the mode (0,7) for r ¼ 0.25

�
 the mode (0,6) for r ¼ 0.75

�
 the mode (0,8) for r ¼ 0.78

�
 the mode (0,8) for r ¼ 1.27.
Fig. 7a–e shows 6 frame of the (0,6) rotating squeal at 6400Hz.

3. Reduced order model of the laboratory brake

In Ref. [7] the authors presented a reduced order model able to predict the low-frequency squeal occurring
in the laboratory brake. This model is here modified to account for two contact points.

The model starts from data derived from the experimental modal analysis of the laboratory brake
components: the beam and the disc. Other two degrees of freedom are added to account for the dynamics of
the pad. Since each pad has a small area in contact with the disc, it is assumed as a point contact. Each pad is
modeled by a one rotational degree of freedom (Fig. 8) defined by an inertia Jp and a stiffness kp.. If there is
not contact between disc and pad, the system mass and stiffness matrices are:

K0 ¼

Kd1½ � 0 0 0 0 0

0 Kd2½ � 0 0 0 0

0 0 Kb½ � 0 0 0

0 0 0 Kb½ � 0 0

0 0 0 0 kp 0

0 0 0 0 0 kp

2
6666666664

3
7777777775

M0 ¼

I½ � 0 0 0 0 0

0 I½ � 0 0 0 0

0 0 I½ � 0 0 0

0 0 0 I½ � 0 0

0 0 0 0 Jp 0

0 0 0 0 0 Jp

2
6666666664

3
7777777775
. (1)
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Fig. 8. Model of the pad as a rotational one degree of freedom system.
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In the out-of-plane direction the pad is modeled by a lumped stiffness kn. When there is contact between disc
and pad the modes of the disc and the beam are coupled together through kn.

The elastic force acting on the disc, due to relative displacement between disc and beam, can be written as

F e ¼ knðzd � zbÞdðx� x0Þdðy� y0Þ (2)

and the modal force Fi
m acting on the ith mode of the disc is

F m
i ¼

ZZ
d

FiFe dxdy ¼

ZZ
d

Fiknðzd � zbÞdðx� x0Þdðy� y0Þdxdy ¼ FP
i knðzd � zbÞ. (3)

Fi is the ith mode of the uncoupled disc; zd and zb are the disc and beam out-of-plane physical displacements
and d is the Dirac function. Fi

P is the mode evaluated at the contact point P(x0,y0).
The displacements of the disc and the beam can be expressed by a linear combination of the modal

displacements so that

Fm
i ¼ FP

i kn

XNb

i¼1

CP
i pi �

XNd1

i¼1

FP
i qi

 !
, (4)

where Ci
P is the ith mode of the beam, pi and qi are the modal displacements of the disc and the beam,

respectively, and Nd and Nb are the number of modes of the disc and the beam, included in the model. These
elements are not diagonal anymore and form the coupling system stiffness matrix K:

Ki;j ¼ FP
i knFP

j 8 1oioNd ; 1ojoNd ,

Ki;jþNd1þNd2
¼ �FP

i knCP
j 8 1oioNd ; 1ojoNb. ð5Þ

In the same way all the others coupling terms of the matrix due to the elastic interaction in the out-of-plane
direction are added.

Under the assumption that the maximum in-plane velocity of the pad is always smaller than the velocity of
the disc at the contact points, so that stick-slip motion does not occur [4], and assuming a friction coefficient
that is constant with the velocity, it is possible to write the moment Mf of the friction force on the pad as

Mf ¼ F f h=2 ¼ mFNh=2 ¼ mkn zd � zb cosðaÞð Þh=2 (6)

that can be also expressed in terms of the modal coordinates as follows:

Mf ¼ mkn

XNd1

i¼1

FP
i qi �

XNb

i¼1

CP
i cosðaÞpi

 !
h=2. (7)

In this way, the terms in the system stiffness matrix are:

K 0i;j ¼ � mknFP
j h=2 8 i ¼ Ns þ 1; 1ojoNd ,

K 0i;jþNd1þNd2
¼ mknCP

j h cosðaÞ=2 8 i ¼ Ns þ 1; 1ojoNb. ð8Þ
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The feed-back force, i.e. the force that the rotation of the pad applies to the disc and the beam, can be
expressed as

K 0i;j ¼ knFP
i lc 8 1oioNd ; j ¼ Ns þ 1,

K 0iþNd1þNd2;j
¼ �knCP

i cosðaÞlc 8 1oioNb; j ¼ Ns þ 1. ð9Þ

The terms in Eq. (9) are symmetric. When the disc is deformed, the stiffness kn causes a torque on the pad:

K 0i;j ¼ knFP
i lc 8 i ¼ Ns þ 1; 1ojoNd ,

K 0i;jþNd1þNd2
¼ �knCP

i cosðaÞlc 8 i ¼ Ns þ 1; 1ojoNb. ð10Þ

The above assumption on the friction force leads to a simple linear model of the coupled system, that has a
stiffness matrix that is not symmetric.

3.1. Discussion of the model

The proposed model accounts for the out-of-plane dynamics of the laboratory brake through the uncoupled
bending modes of the disc and the beam that can be accurately measured. Since these measurements are
performed in uncoupled condition, i.e. when the disc and the beam are not in contact, the modes are not affected
by any uncertainty or nonlinearity related to the pads. The in-plane dynamics of the disc is not included in
the model because it was verified that the first rotational mode of the disc is around 800Hz and falls below the
frequency range of interest,3 while the other in-plane modes are above 10kHz. Moreover, during the
experiments, squeal occurs only at frequencies corresponding to bending modes of the disc or the beam. At these
frequencies the in-plane vibrations of the disc are negligible with respect to the out-of-plane ones.

The small brake pads are modeled in the out-of-plane direction by a stiffness connection between the disc
and the beam; such simplification is acceptable for the aim of this study because the wavelengths related to the
squealing bending modes are much larger than the length of each pad, so that the pressure distribution along
the contact surface, may be represented by its average.

The dynamic characteristics of the pads in the model are its moment of inertia J, the out-of-plane stiffness
kn, and its rotational eigenfrequency. The value of kn can be evaluated experimentally [7], the effective moment
of inertia J can be obtained through a FEM of the pad, while the rotational eigenfrequency of the pad is
considered highly variable and need further explanations.

In the laboratory brake, the experimental results in Refs. [4,7] showed that the 1st in-plane natural
frequency of each pad can vary largely. This is mainly due to the fact that given its small size its dynamic is
largely affected by the contact conditions (i.e. variations of the contact conditions are due to normal load
variations and effective extent of the contact between each pad and the rotor); moreover, the wear of the pad
can have a consistent influence on its dynamics.

Therefore, it is convenient to perform the complex eigenvalue analysis in function of the eigenfrequency of the pad.
A last consideration concerns the contact law: in the literature many authors use a constant friction

coefficient and the assumption of no stick-slip behavior [3,13–16]. The transient dynamic numerical analysis
performed in Ref. [9] showed the absence of the stick-slip during squeal simulations. The experimental results
in Ref. [4] show that, during the squeal limit cycle, the maximum in-plane velocity is between 30% and 50% of
the average rotational velocity of the disc. This difference assures that measurement errors or variation in the
rotational velocity would not cause any change in the direction of the relative velocity. Moreover, the onset of
instability occurs when the in-plane vibration of the pad is two orders of magnitude lower than the amplitude
of the squeal limit cycle, implying that the onset of instability can develop in non-stick-slip conditions.

Final consideration concerns the linearity of the model that may only be used to detect possible unstable
solutions and the first few instant of the squeal vibration, while squeal is characterized by an exponential
growth. It is not possible to derive from a linear model the amplitude of the limit cycle that is due to nonlinear
effect related to the contact [9]. Therefore, the aim of the model is only to predict the unstable modes as the
distance between the pad changes and to verify the dependency between the onset of the instabilities and the
dynamics of the system.
3Squeal events below 2 kHz did not occur during the experimental investigation.
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3.2. Complex eigenvalue analysis

In order to study the squeal tendency of the setup, a stability analysis is performed on the model, and the
unstable eigenvalues are equated to a possible ‘‘squealing mode’’.

To verify the proposed model, a comparison between the dynamic behavior of the setup and the dynamics
of the model is performed. Fig. 9 presents a comparison between the eigenvalues of the model corresponding
to the (0,5) mode of the disc, and the experimental results obtained for the same mode as the distance between
the two pads ranges between 0mm and 134mm. The results show a good agreement, assuring that the
parameters chosen to model the pads are consistent with the experiments.

The complex eigenvalue analysis is performed, for a given distance between the two pads, as the
eigenfrequency4 of the pads changes. In the following, as eigenfrequency of the pad is intended the quantity
f p ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
kp=Jp

p
=2p, that is the eigenfrequency of the pad in uncoupled conditions. As noticed in the previous

section, it is possible to shift this natural frequency during the experiments, by adjusting the configuration of
the setup, from 800Hz to 12 kHz. However, the model account for modes of the disc and the beam only up to
8KHz, because of the limited bandwidth available during the modal analysis performed on the setup.
Moreover, no squeal events where found below 3000Hz: therefore, the reported stability analysis of the model
is limited between 2.5 and 9 kHz.

Fig. 10 shows the result of the complex eigenvalues analysis performed for a fixed distance d ¼ 0; the plot
shows on the x-axis the eigenfrequency of the pads while, on the y-axis, the frequencies of the eigenvalues are
displayed. For each value of the eigenfrequency of the pads, the eigenvalues of the model are extracted and are
plotted as gray dots. If the real part of an eigenvalue is positive, this eigenvalue is plotted as a black dot.

Therefore, Fig. 10 presents a stability map of the model, highlighting by black lines the possible instabilities.
The instabilities may occur when the eigenfrequency of the pads in coupled conditions, that it is the diagonal
gray line, falls close to certain mode of the disc or the beam, i.e the horizontal lines. By comparing Fig. 11 with
Table 1 it is possible to see a good agreement between noise frequency measured during experiments and
predicted unstable eigenvalues. Moreover, comparing numerical results with Table 3 that reports the unstable
modes obtained during experiments, it is possible to observe a good agreement between the two.5

For each unstable disc mode found, an analysis on the influence of the distance between the pads is
performed. The eigenfrequency of the pads are set in order to have the maximum real part of the unstable
eigenvalue for d ¼ 0, and several stability analyses are performed as the angular distance between the pads
ranges between 0 and 134mm. Fig. 11a, shows these results for the (0,4) mode of the disc, Fig. 11b for the (0,5)
mode, Fig. 11c for the (0,6) mode, and Fig. 11d for the (0,7) mode.

All the plots in Fig. 11 show the same qualitative behavior: for a small distance between the pads compared
with the mode wavelength, i.e. when ro0.25, the (n,m+) mode is at higher frequency with respect to the
corresponding (n,m�) mode and it is unstable. While r approaches the critical value r ¼ 0.25, both the
eigenvalues show possible instability. If 0.25oro0.75, the (m,n�) modes are at higher frequency and they are
likely unstable. Thus, as highlighted by the experiments (see Table 3), the instability involves always the split
mode at higher frequency. Moreover, the experimental occurrence of rotating squeal can be related to the
simultaneous instability of both (n,m+) and (n,m�) modes, that occurs around r ¼ 0.25+0.5i, i ¼ 0,1,2yn.
4. Conclusion

The proposed experimental setup and the measurements presented in this paper correlate the high frequency
squeal behavior to the modal properties of the laboratory brake setup.

The setup is able to reproduce easily and, thus, study many squeal conditions; particularly interesting is the
possibility of studying the rotating squeal correlating its occurrence with specific values of the parameter r

which results to be the key to organize the different high-frequency squeal behaviors.
4For the sake of simplicity the two pads are assumed to have the same eigenfrequency. The analysis of the complex eigenvalues,

performed by considering the two eigenfrequencies of the pads independent, did not added any qualitative change in the results.
5The instability at 4300Hz, involving a bending mode of the beam is obtained experimentally but it is not discussed here because it is not

related to a disc mode squealing.
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Fig. 9. Comparison between the eigenfrequencies of the (0,5+) and (0,5�) modes of the disc obtained from the experiments (dashed and

continuous line) and from the model (dots) when the distance between the pads changes.

Fig. 10. Complex eigenvalue analysis performed for a distance between the pads d ¼ 0.
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Moreover, the results allow for a more consistent classification between low- and high-frequency squeal,
based on the value of the ratio r: low-frequency squeal occurs for ro0.25, while, for r X 0.25, rotating squeals,
that are characteristic of the high-frequency squeal, can occur as well as squeals involving the (n,m�) modes of
the disc.

The general rule is that the squeal involving a disc mode involves the one at higher frequency between the
two modes derived from the split of the double mode of the disc in ‘‘free conditions’’.

The presented results extend the conclusions found for the low-frequency squeal in Refs. [4,7,8]
where the authors found that low-frequency squeal develops at a frequency corresponding to a natural
frequency of the coupled system and involves an (n,m+) mode of the disc. In fact, for the low-frequency
squeal the (n,m+) modes results to be always at higher frequency with respect to the corresponding
(n,m�) modes.
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Fig. 11. Stability analysis performed as the angular distance between the pads ranges from 01 to 501. (a) mode (0,4); (b) mode (0,5); (c)

mode (0,6); (d) mode (0,7).
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The proposed reduced linear model allows for an easy stability analysis that reflects the squeal instabilities
found during experiments. This corroborates the idea that the squeal is a dynamic instability caused by the
coupling between two modes of the brake. In the laboratory brake the squeal involves always a mode of the
pad coupled with a mode of either the disc or the beam.

Occurrences of rotating squeal are strongly correlated to the value of the ratio r. To generalize this finding
about rotating squeal to commercial brake, it is possible to state that a rotating squeal occurs for special
contact and geometrical conditions that causes two split modes of the disc to have again very close natural
frequency.

Finally the rotating squeal may be predicted as possible squeal condition based on the results of a reduced
linear model. However, the possibility of modeling the actual traveling wave, needs a more sophisticated
nonlinear model, including nonlinear aspects of the contact between disc and pad.
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